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FREE FLOW OF A GRANULAR MATERIAL 

FROM AN APERTURE IN THE PRESENCE OF 

A GAS COUNTERFLOW 

G. G. Kuvshinov UDC 66.096.5 

1. INTRODUCTION 

The problem of free flow of a granular material from a single aperture is the classical hourglass problem but there are 
no composite physical pictures of the mechanism of the process. Even less study has been made of the free flow of a dispersed 

material from a single aperture under conditions that are typical of the operation of a system of return flow of dispersed 
material in equipment with stationary, moving, fluidized, or circulating layers, as well as dispersed material hoppers and 

feeders, where the free flow of dispersed material from an aperture takes place against a gas counterflow. Besides the free flow 

velocity, the critical gas velocity at which particles cease to flow freely is an important practical parameter in this case. 
A review of publications on this subject is contained in [1]. The largest number of those publications deal with gravity 

flow of a dispersed material from an aperture when no gas flow exists. Experiments showed that the flow velocity in this case 
is almost independent of the height of the granular material layer [2], provided that the height of the layer above the aperture 
does not exceed the aperture diameter. Kennerman et al. [2] also showed that the nature of the free flow does not depend on 

the presence and location of immobile elements in the layer above the aperture, if they are at a height greater than the aperture 

diameter. These results are very important since they indicate that the flow velocity does not depend on the nature of the 
particle motion above the aperture but rather is determined by the emergence of particles from the dense layer into free space. 

The empirical relations proposed in various publications [3-8] for calculating the mass discharge rate of a dispersed 

material through an ape_mare in the absence of a gas flow can be reduced to 

jrn = KI IpdSo(#do)  x12, (1.1) 

where k is a constant dimensionless coefficient, II  is a correction factor that depends on the aperture/particle diameter ratio, 

Pd = Ps(1 -- e0) is the bulk density of the dispersed material, Ps is the apparent particle density, eo is the porosity of the 
immobile layer, So and d o are the aperture area and diameter, and g is the free fall acceleration. 

Table 1 shows the principal differences between the relations given in the literature for calculating the free flow velocity 
of truly free-flowing dispersed material. The square brackets contain the values introduced into the original formulas so that 

could be reduced to the form (1.1). The main difference consists in the specific way that the influence of particle size has been 
taken into account. Comparative calculations indicate that all the relations are in fairly good agreement, the exception being 
the formula in line 3, which was evidently given with an error in [5]. 

Very little experimentation has been done on the free flow of particles in the presence of a gas counterflow [4, 5, 9, 

10]. It has been determined [4, 5, 10] that as the gas velocity increases the flow velocity of the dispersed material decreases 
and at the critical gas velocity W= the particle motion ceases altogether or becomes pulsational with a very small flow of 
material through the aperture. We know of no relations for calculating the flow velocity of a dispersed material from an 
aperture in the presence a gas counterflow as well as the values of Wa~. 

Theoretical attempts to describe the process of free flow of a dispersed material from an aperture have been undertaken 

only for the case when there is no gas flow in the aperture. Studies on this subject cannot be considered to have been successful 
since the relations obtained in them contain empirical coefficients and the initial propositions are wrong in a number of cases. 
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TABLE 1 

K 17 Note Reference 

0 , 5 5  1 - -  [3] 

6,6r.o,4o314) ~ = 0.87-0.99 ~ , I  (1 - 2 ,487~r)  r / =  0.24-0.29 [4] 
['q ,/o ,, 

s,41,r[q = 0.82-0.99 (1 - 2,48 a~.--~r) /do 7/ = 0.24-0.29 [5] 

(g, m/sec 2) 

= 0,686 (1 -- 1,8 d~-~o + 6,4 ( . .~ )2)  [6] 

(g, cm/I/lill 2) 

,(~)~12 &l[(1 - "o)] = (I  -- . .~)sD "o = 0,4 [71 
= 0.51-0.64 1"= 0.82-1.02 

0,65(1,6) 1/2 = 0,82 (1 -- 1 , 2 5 ~ )  5/2 [8] 

In particular, the derivation of equations in [11] for the discharge rate of granular material was based on the assumption 
of planar packing of particles, which should not occur near the aperture; moreover, the relations obtained do not make 

allowance for the influence of particle size. 
When deriving the relations for the discharge rate of particles Zenkov [12] assumed that the cross-sectional area and 

flow density are constant near the aperture for a variable particle velocity, but this is contrary to the law of conservation of 

mass. 
Linchevskii postulates in [3] that a dynamic dome exists above the aperture, particles beneath the dome move in the 

free fall mode, i.e., with acceleration, and at the same time the density of the flow beneath the dome is constant and is equal 

to the density of the stationary layer. Clearly, this is also impossible if the law of conservation of mass is observed. 
The hypothesis that is most promising for the further development of the theory of free flow of a dispersed material 

from an aperture is that a dynamic unloading dome exists above the aperture. This well explains why the velocity of free flow 
is independent of the height of the layer and the distinctive features of a granular medium above the aperture, provided that 

the height of the free granular layer above the aperture is greater than the aperture diameter. 

2. ELEMENTARY THEORY OF FREE FLOW OF A 
GRANULAR MATERIAL FROM AN APERTURE 

The proposed theory is based on the aforementioned hypothesis that a dynamic dome exists above the aperture. The 

dynamic dome hypothesis, as mentioned in [3], was first advanced by Pokrovskli and Aref'ev. The concept of a dynamic dome 
is arbitrary to some degree. Particles are not tightly bound either beneath or above the dome. Since they are mobile, the 

distance between them should be slightly greater than in an immobile layer. The parts of the flow above and beneath the dome 

differ in that moving particles above the dome interact with each other. Particles moving in an ensemble reach the maximum 

possible velocity on the surface of the dome. Further acceleration of the interacting particles in the constricting flow causes 
the flow to jam and break. The velocity of free flow of the granular material is determined by the emergence of particles from 

the dynamic dome into free space, where the particles move in the free fall mode, without interacting with each other. To solve 

the problem of free flow of a dispersed material within the framework of the given model, we must consider the emergence 

of particles from a dynamic dome formed above an aperture. 

The position of particles in the dome, the action of the forces, and the displacement of particles over the dome are 
depicted schematically in Fig. la. The dome is assumed to be spherical. Particles in the dome are in continuous motion, with 

the particles moving away and the dome being renewed continuously. Only part of the array of particles lying at the base of 

the dome on the grid are in a slightly different state. These particles come out of contact with the immobile grid substantially 
more quickly than do the other particles and as a result the lower array of particles of the dome remains on the grid even when 
they only touch the grid. Because the particles of the lower array are bound to the grid the aperture is partially covered, as 

it were, by particles of that array. Bearing the above in mind, we can assume this dome has a diameter that is smaller than the 

aperture diameter d~ by a value almost equal to the particle diameter ds, i.e., the dome diameter dD = da - ds. 
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Fig. 1 

Let us consider the mechanism by which a particle emerges from the dome. Suppose that this is particle 1 in Fig. la. 

In the radial direction of interest to us the particle moves in the dome under the effect of the radial component F ,  (0) of the 

external forces, which depends on the polar angle 0 (Fig. lb). This force is the projection of the sum of the external forces, 

i.e., the gravity force F~. and the friction force Fg~ associated with the particle, onto the radial direction. During motion the 

particle under consideration acts on each of the n neighboring particles, hindering their emergence (particles 2 in Fig. la), with 

a force 

RD= F l ( 0 ) / ( n s i n , , ) .  (2.1) 

In this case particles 2 move on the surface of the dome with a velocity Wo. The balance of forces acting on those particles 

can be written as 

R v -  R w  = tubas, (2.2) 

where Rw is the resistance force due to the collision of particle 2 moving with velocity WD in the dome with surrounding 

particles and a s = dW~/dr is the acceleration of particle 2. That force would be the same as if a particle flux of density 

ps(1 - -  e) with velocity W D (e is the porosity of the dome) were to impinge on a stationary particle of cross section 7rds2/4. The 
force Rw is equal to the change in the momentum of the particles in the flux as a result of collisions with the given particle in 

a unit of  time. Assuming the collisions to be elastic, we obtain 

Rw = p,(1 - r (2.3) 

As follows from Fig. la, 

sina = d,l(d.,- d,). (2.4) 

Taking (2.1)-(2.4) into account, on the basis of (2.2) we write 

dWv _ 6Fi(O)dv 3(1 - e) W~,  (2.5) 
dr ~d4spsn ds 

whereupon, by integrating over time from 0 to ~" and over velocity from 0 to Wo we determine the time z in which particle 2 
acquires a velocity Wv, 

WD 
f dWv 1 A + BWv 

r = A 2 - B ' 2 W ~  = 2-'A'B "ln A - BW v' (2.6) 
o 

871 



where 

A2 = 6F• D B2 3(1 - e) 
rdaspsn ' = d, (2.7) 

From (2.6) we find 

A e 2ABe" -- 1 
(2.8) 

WD = B e  2AB~" q- I " 

Cubic packing is the most stable packing of particles in a single layer [13]. Accordingly, we assume that a particle leaving the 
dome a particle is in such a packing and thus acts on four neighboring particles 2, as shown in Fig. lc. In that case we must 

assume that 

n = 4 ,  6 = d s ( 2 -  2x/2) /2 ,  (2.9) 

where 6 is the distance by which the particle 2 must be displaced under the effect of a particle 1 leaving the dome, as is seen 
T m  

from Fig. lc. On the other hand, ~ = f WD dr  ( r~  is the time taken by a particle to emerge from the dome). With 
o 

allowance for (2.8), therefore,we ~ v e  

Solving (2.10) for rm, we obtain 

~5 = ( 1 / B  2) In ch (ABrm) .  

rm = (1 lAB) ln (e  ss~ + (e 2sB~ - 1)1/2). 

Taking (2.7) and (2.9) into account, we recast (2.1) in the form 

r,n = (rd~p,n/( lSdr - e)Fa.(O))) 1/2 In Z ,  

where 

(2.10) 

(2.11) 

(2.12) 

Z = e sB2 + ( e  2sB2 - 1) 1/2. (2.13) 

The quantity rm characterizes the time in which one particle emerges from the dome area ~-ds2/(4(1 - e), per particle 

in the dome. The number of particles from an elementary annular element d s of  the dome (Fig. lc) per unit of  time is 

aN = 4(1 - e)ds/Qrd~r,,~). (2.14) 

The mass flow rate of  particles from an elementary annular portion with allowance for (2.9) is dim = pslrds3/6dN. 
Consequently, when we take (2.12) and (2.14) into account and make the substitution ds = (lrdc2/2)cos 0 dO, we fred 

d i m  (1-g)3/2d~a/2 (~cP'F'l ' (O))l l2hl-l  ZcosO.dO.  (2.15) 
= dis~2 
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Fig. 2 

To calculate the total flow rate of granular material through the aperture we must integrate (2.15) over 0 from 0 to ~r/2. As 

before, we must solve the problem of determining the radial component of the external body forces Fa. Obviously, for free 
gravity flow without gas filtration we have 

r d ]  
Fix(O) = "-g-P.9 sin0. (2.16) 

The resistance force that acts on the particle and is due to gas filtration can be determined by using the Ergan equation 
for the pressure drop during gas fdtration through a layer of stationary granular material [14]: 

p, = 1 5 0 ( i -  e)~p,~.Uo ( i ~ ) p ~  
s 3 d~ + 1,75 e d, " (2.17) 

Here og and u s are the density and kinematic viscosity of the gas, P= is pressure drop per unit segment, and Uo is the gas 
filtration velocity per unit dome surface. 

Bearing in mind that Uo = Wa/2 (by virtue of conservation of gas flow rate) the gas velocity Wa at the base of the dome 
(velocity in the aperture) and the gas fdtration rate Up on the dome surface are inversely proportional to the areas of the dome 

base and surface) and the force acing on one particle from the gas is Fg = P~/n~, where the number of particles per unit volume 

is n I = 6(1 - e)/Ords3), we obtain 

rrdspgWa 2 2 

Fg = 12,SrL~.a~d,pavaWa + 7,29- 10-2 
�9 ~ -  ~3 " (2.18) 

Assuming that the direction of gas motion for particles at the dome surface coincides with aperture axis, the radial component 
of the friction force, like the gravity force, is written as 

Fgz = F g s i n O .  (2.19) 

Now, taking (2.16) and (2.19) into account and integrating (2.15) from 0 to r/2, we have a relation for calculating the mass 
flow rate of a dispersed material per unit time through the aperture, 

\ r~p, / T,) ' 

(2.20) 

where 

K = 4((1  - e ) / 3 ) 3 / 2 / ( 1  - ~o)1 In Z .  (2.21) 

Equation (2.20) is a generalized relation for the velocity of the free flow of a granular monodisperse material through 
a round aperture by gravity with no gas counterflow. This relation is not strict. Moreover, it must be noted that even though 
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it was obtained within the framework of certain assumptions about the mechanism by which particles emerge from the dome, 

this relation does not contain undetermined coefficients. 

Within the scope of ideas about the mechanism of free flow of a dispersed material from an aperture the critical gas 
velocity, at which the free flow of solid particles from the aperture ceases, is found from (2.20) for the eonditionjm = 0, 

W~ = 4Ar vg/ds 

(Ar = ds3psg/Cog~,g 2) is the Archimedes number). 

The relations obtained do not take into account a number of factors, which are very difficult to characterize 

quantitatively: particle shape, moisture content, presence of electrostatic forces, polydispersity, and other factors that produce 

cohesive forces between particles or, conversely, increase their mobility. These factors are generally included by choosing the 
appropriate proportionality factor K. 
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3. COMPARISON OF T HE  THEORY WITH EXPERIMENTAL DATA 

Gravity Flow of Dispersed Material f rom an Aperture.  Numerous studies have been done on this subject. It is 

desirable, therefore, to consider the primary experimental data. It is more convenient to compare the theoretical relations found 

here with the relations given in the literature and supported by experiment that are recommended for the free flow of easily 

flowing materials from cylindrical apertures when there is no effect of a gas flow. 

Equation (2.20) has the form 

jm = KpctSa (dag)l/2(1 - d,/d,a) s/2 (3.1) 

for the case considered (Fg = 0). 

Equation (3.1) has turned out to be very similar in form to the relations obtained in the literature by processing 

experimental data (see Table 1). The main parameter in (3.1) is the aperture diameter to the power 2.5, which affects the flow 

rate of the dispersed material. Like the relations in [4-8], Eq. (3.1) reflects the weak influence that particle diameter has on 

the flow rate. As follows from (3.1) and experiments, that influence is more pronounced for large particle and aperture 

diameters. A law of variation of the flow rate as a function of the particle diameter, which is similar to (3.1), was established 

experimentally in [7, 8]. As d,/d o decreases the dependence on the particle diameter degenerates and (3.1) takes on the form 

of that in [3]. 

The factor K in (3.1) is not empirical. It can be calculated if the dome porosity e is known, but such information is 

not available. Moreover, we must note that the possible range of e is fairly narrow and as a result even an arbitrary choice of 

e in the possible range does not increase the error of determination of K by more than 10%. 

In the derivation of Eqs. (2.20) and (2.22) it was assumed that particles on the surface of the dynamic dome have the 

least stable cubic packing. The porosity is e = 0.47 for cubic packing in the static state and should be slightly higher in the 

mobile state. That increase cannot be evaluated within the framework of the model under consideration. Experimental data on 

the determination of the porosity of vibrationaUy fluidized and moving layers as well as on a layer in the state of 

pseudofluidization suggest that under these conditions the porosity is 5-10% higher than that of  an immobile layer. Such an 

increase in porosity above 0.47 as a result of the mobility of the particles can be expected in the given case. When the above 

is taken into account we can take the value e = 0.5 in (2.21) and the corresponding value K = 0.45 (in accordance with 

(2.21)). 

As comparison shows, Eq. (3.1) agrees fairly well with the empirical expression [15] as to form and quantitatively. 

It is noteworthy that the average value of the proportionality factor, determined by the theoretical relation (2.21) for e = 0.5, 
agrees to within 20% with the average value of that factor, found experimentally in [3, 7, 15] for free-flowing materials. 

Equation (3.1) which contains no new empirical constants, therefore, gives a fairly good description of  experimental data on 

gravity flow of  a dispersed material through a single aperture into free space. It must be noted that comparison of the 

experimental data of different workers reveals a discrepancy of more than 20%. This can be attributed to the influence of 

factors not usually included, such as an excessive moisture content of the material, electrostatic forces, influence of  the 

aperture edges, and so forth. 

Free Flow of a Dispersed Material in the Presence of  a Gas Cotmterflow. A comparison of the calculated results 

from the relation obtained and published experimental results on gravity flow of a granular material through an aperture in the 
presence of  a gas counterflow is illustrated in Figs. 2 and 3, where the lines represent data calculated from (2.20) with 
allowance for (2.18) and (2.21) and the points represent the experimental results. The porosity e of  particles in the dome was 

assumed to be 0.5, as in the case of free gravity flow. The experimental data in Fig. 2, which were borrowed from [5], 
correspond to the free flow of  chamotte powder from an aperture with d~ = 0.04 m [1, 1') d, = 0.0015 m, Od = 990 kg/m 3, 

2, 2') d, = 0.0025 m, & = 970 kg/m 3, 3, 3') d, = 0.004 m, Pa = 920 kg/m 3, 4, 4')  d, = 0.0065 m, Pd = 900 kg/m3]; the 

data in Fig. 3, which were taken from [10], correspond to the flow of particles under the following conditions: a) aperture 

0.0125 x 0.0125 m, d, = 0.625 ram, & = 2420 kg/m 3, b) aperture 0.0125 x 0.0125 m, d, = 1.025 ram, & = 2500 kg/m 3, 

c) aperture 0.0145 • 0.0145 m, ~ = 1.425 ram, & = 2540 kg/m 3. The coordinates in Figs. 2 and 3 were taken to be the same 

as in [5, 10] (Q = red, W J4 is the gas flow rate through the aperture, Jv = J JPd)- 
It is seen from Fig. 2 that in the main range of gas velocities the calculated particle flow rates deviate from the 

experimental data by less than 30%. The relative deviation may be more significant at near-critical gas velocities as j= --- 0 

(e.g., data 2, 2'). When the instability of free flow noted in [10] for free flows at near-critical values is taken into account, 
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however, the agreement between the experimental and calculated results can be considered to be entirely satisfactory. 

Unfortunately, the critical velocity at which free flow ceased was not recorded in [5]. At the same time extrapolation of the 

experimental results to Jm = 0 gives Wac values that are close to the calculated values. 
Calculated and experimental results obtained in [10] for the velocity of free flow of a granular material from rectangular 

apertures are compared in Fig. 3. The calculations were done with the equivalent diameter determined from dae = 2(S Jr) ~/2. 
As is seen from Fig. 3, qualitatively the proposed theory faithfully reflects the law of variation of the flow rate of a granular 
material as a function of the gas velocity through an aperture. The difference between the results calculated from (2.20) and 

(2.22) differ from the experimental data for the flow rate of particles through an aperture is less than 30-35% and for the 

critical gas velocity, 5-7 %. Such agreement for the process under consideration can be considered to be entirely satisfactory. 

From a comparison of the calculated and experimental results we can conclude that the developed elementary theory, 

which does not include new empirical constants, agrees well with experimental data and makes it possible to describe the 

velocity of free flow of a dispersed material from a single aperture in the presence of a gas counterflow over the entire range 
of velocities. The divergences can be attributed to the influence exerted on the process by uncontrolled factors: the moisture 

content of the dispersed material, electrostatic forces, vibration, polydispersity, etc. Taking these factors into account is a 

problem for the further development of the theory of the free flow of dispersed material from an aperture. 
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